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Analyticity of Schrodinger energy levels for confining 
potentials 
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Department of Physics, North Bengal University, Raja-Rammohunpur, Darjeeling, India 
134430 

Received 3 March 1982 

Abstract. The analyticity of the Schrodinger energy levels in the coupling constant p for 
a class of confining potentials of the type 

V \ r ) = - l / r + a r + p r 2  

has been studied by using Kato-Rellich perturbation theory for linear operators. 

1. Introduction 

The phenomenological success of the non-relativistic confinement hypothesis for heavy 
quarks (Appelquist and Politzer 1975) has led to considerable activity in the study of 
the general properties of confining potentials (Grosse and Martin 1980, Quigg and 
Rosner 1979, Datta and Mukherjee 1980a, b, 1982a, b). In an earlier paper (Datta 
and Mukherjee 1980a), we considered the class of potentials 

V ( r ) = - l / r + a r + p r 2  (1.1) 

and investigated the 5 plane analyticity of a Green function. We also studied the 
analyticity of the corresponding Schrodinger energy levels near 5 = 0. The class of 
potentials (1.1) is a possible candidate for the quarkonium potential as has been 
indicated by the quarkonium spectroscopy (Grosse and Martin 1980). In the special 
case of p = 0 and a > O  the potential (1.1) reduces to the well known charmonium 
potential (Eichten et a1 1975). Apart from its relevance in heavy quarkonium spectro- 
scopy, the class of potentials (1.1) with p = 0 has important applications in atomic 
physics. The Stark effect in a hydrogen atom in one dimension is given exactly by 
the charmonium like potential (a being the electric field parameter). The analyticity 
of the energy levels En(a)  in the electric field parameter a was investigated rigorously 
by Graffi et a1 (1979). They followed the method of Simon (1970) and Loeffel and 
Martin (1970), which has been developed originally to study a similar problem in 
connection with an anharmonic oscillator. The study leads to a better understanding 
of the nature of the divergence of the corresponding Rayleigh-Schrodinger energy 
series and also in the possibilities of its summability to yield the correct energy level. 

The more general class of potentials (1.1) with p > 0 is also relevant in atomic 
physics. This could be interpreted as the potential seen by an electron of an atom 
exposed to a suitable admixture of electric and magnetic fields. Recently Rau (1979) 
has suggested a model to realise this type of potential. According to the model, an 
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electron at the surface ( z  = 0) of liquid helium should experience, in addition to the 
force due to the one-dimensional image Coulomb potential - l / z ,  an electric field 
normal to the surface and a crossed magnetic field along the surface. The resulting 
potential should then assume a form similar to (1.1) i.e. - l / z  + az +pz2 .  A systematic 
study of the analyticity of the energy levels for the potentials (1.1) in the confining 
coupling constant ( p )  plane, therefore, may be useful for many problems. This is 
what we intend to do in the present paper. It will be shown that the Rayleigh- 
Schrodinger energy perturbation series in p is totally divergent. The energy level 
E, (p )  is, however, analytic in the first Riemann sheet of the p plane cut along the 
negative real axis and due to this analyticity property the divergent perturbation series 
is still summable in a suitable sense. 

The paper is arranged as follows. In § 2 we discuss the domain problem associated 
with the relevant Schrodinger operator and also study the corresponding spectrum. 
In § 3, we prove the p analyticity of E,, (p). We summarise the results in 0 4. 

2. The spectrum 

Let us denote the Schrodinger operator corresponding to potentials (1.1) by 

For real 5, a and p > 0, the formal operator H(5, a, p )  in L’(0, CO) is a semi-bounded 
self-adjoint operator with a compact resolvent on the domain 

D ( H )  = {U /U, U ’  absolutely continuouslu, U ’  E L2)u (0) = OlHu E L2}. (2.2) 

The corresponding spectrum consists of discrete real eigenvalues converging only at CO. 

To study the spectrum for complex parameters we need the following two operators 

and 

D(h2j ={uIu,  U ’  absolutely continuouslu, u’~L’1u(O)=Olh~u EL’}. (2.4) 

Lemma 2.1. D(h2) DD(hl) = D ( H ) .  

Proof. Let ho= -d2/dx2+1(1+l)/x2. Then D(hi )=D(ho)nD(x‘ )  and D ( x ’ ) c D ( x )  
where D(x’)  is the domain of the maximal multiplication operator by x i  in L2(0,  CO), 

i = l ,  2. Hence D ( h z ) = D ( h O )  n D ( x ) ~ 3 ( h O j n D ( x 2 ) = D ( h 1 ) .  

For p in the cut plane larg < T, hl(O, p )  defines a closed operator on D ( H ) .  
Also for each compact set in the p cut plane there exist constants a and b such that 
(Simon 1970) 

IIX’U II a llhI(0, P ) u  II + b Ib I I ,  U ED(H) .  (2.5) 
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Lemma 2.2. For any fixed p in the cut plane larg PI < IT, hl (a ,  p )  is a holomorphic 
family in a of type A. For any fixed a in the complex plane, h l ( a ,  p )  is a holomorphic 
family in p of type A as long as p belongs to larg p I C IT. 

Proof. The first part follows from the fact that for each E ~ ,  one can find So such that 

x > o  2 
X c E $  +so, 

IIXU )I s EoaIJhi(0, P b  II + (cob + so)IIu IO 
and hence from (2.5) we obtain 

U ED(W). (2.6) 
Thus x is hl(O, p )  bounded with relative bound zero and hence the holomorphy in a 
follows from the standard criterion (Kato 1976). The proof of the second part follows 
from (2.5). 

The operator family h2(5, a )  has been studied by Graffi et a1 (1979). Making use 
of their results, one gets the inequality 

I lx-1UII~~clh2(o,~)~l l+dl lu l l~ O < C < l ,  U ~ D ( h 2 )  (2.7) 

where c and d are constants independent of a in compacts in the cut plane larg a I < IT. 

Lemma 2.3. Let U E D ( H ) .  Then for compacts in the cut planes (arg a (  < 7r and 
larg pi< IT there exist constants al, bl such that 

llx-141s alllhlb, P ) 4 l + b l l l 4  (2.8) 
where O < a l < l .  

This result is, however, true even when larg a1 = IT. We write a = -a’, a’> 0 in 
hl(a,  P )  to obtain 

/ I l ( * ,  P ) =  - < + W + a ’ x  +Px2-2afx. 
dx x 
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where E ,  al > 0. The middle inequality follows from (2.8) and (2.6). This completes 
the proof. We thus conclude the following theorem. 

Theorem 2.1. Let 5 and a be finite complex numbers and p lie in a compact set in 
larg < IT. Then x-’ is hl (a ,  p )  bounded with relative bound zero. The operator 
family H(5, a,  p )  is a holomorphic family of type A in each parameter when the other 
two remain fixed in their respective domains and it has compact resolvants. 

The theorem means that each eigenvalue of H ( f ;  a, p )  that is non-degenerate at 
a point N(50, ao, Po) is analytic in a neighbourhood of N. For real 5, a and p > 0 
each eigenvalue E,,(J, a,  p )  is analytic, which follows from the self-adjointness of the 
corresponding H ( &  a, p). It also follows that the spectrum of H(f ;  a, p )  for complex 
parameters consists precisely of the analytically continued eigenvalues E,, ( f ;  a, p). 

The above results together with the Symanzik scaling law (Simon 1970, Datta and 
Mukherjee 1980b) 

(2.10) E,,(& J3a, 1) = P-”*En(l, a, P ) ,  p = 5-4 

allow us to use directly the general technique developed by Simon (1970) to analyse 
the singularity structure of the function E,([, a, p )  in the plane when a > 0 and 5 
is real ([>O for a = 0). It follows that for fixed 5 and a, E,,(& a, p )  has an infinite 
number of branch points and/or natural boundaries for complex p. The point p = 0 
is a limit point of these singularities and thus is an essential singularity. It is also clear 
from the scaling equation (2.10) that p = 0 is a fourth-order branch point of E,,. The 
occurrence of an essential singularity at p = 0 now tells us that the energy perturbation 
series Z,a,,p” in p is totally divergent. The series is, however, asymptotic to E,,@) 
uniformly in 0 < < E ,  larg pl <   IT (cf Graffi et al 1979). 

3. First-sheet analyticity 

Here we shall prove that the first sheet of the cut plane is free from any singularity. 
We shall prove this explicitly for E,,(& a, p )  with fixed 5 > 0, a 3 0. Extension of the 
result for negative values of 5 and a could be done trivially by analytic continuation. 
In the following we shall follow the arguments of Loeffel and Martin (1970). Apart 
from its relevance in the summability of the perturbation series, the study is of interest 
in itself since the potential consists of three different terms. 

Lemma 3.1. When p is complex with )arg 01 < IT, Im EJIm p > 0 for fixed real values 
of 6 and a. The same is true in (-5) with larg(-f)l< IT and in a with larg a I < IT for 
fixed real values of other parameters (p  > 0). 

The proof of this lemma can be obtained by following Simon (1970). 
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Let U, be the wavefunction corresponding to the eigenvalue E,. Then U, is an 
entire function of the variables 5, a and an analytic function of x in the complex plane 
cut along the negative real axis. It has the asymptotic behaviour 

En ) (3.1) JP a u o = x  -v2 exp ( - -x2- -  2 \ l P x + 2 J p ~ n x  un/uo-* 1, 

in the sector larg X I  < 7r/4. un is square integrable even on larg X I  = 7r/4 when a > 0. 
The existence of the scaling equation (2.10) makes it sufficient to consider 

E,(l, a, p) ,  a 20. From the Herglotz property (lemma 3.1) we know that E,(l, a, p )  
has no isolated pole or essential singularity in the p cut plane. Thus &(l, a, p )  will 
be analytic in l a rgp l<r  if one can prove the non-existence of branch points and 
natural boundaries. Let us first show this in the sector larg [I < 7r/4 for the function 
En((, 13a, 1). From equation (2.10) it follows that E,((, c3a, 1) has no isolated pole 
or essential singularity at least in larg 51 < 57/4. To show the non-existence of branch 
points we proceed in two steps. 

Step 1. Let 5 > 0. The Schrodinger equation along a ray x = tei4 takes the form 

(-;iTi+-;i--- t + 13a e3i4t + e4+t2 a >o.  d2 1(1+1) (e” 
(3.2) 

We multiply equation (3.2) by U: and then integrate partially. Taking the imaginary 
part we obtain 

(3.3) 

Q(t,  (,d) = t 3  sin 44 + f 3 a t 2  sin 3 4  -Eat sin 2 4  - 5 sin 4. (3.4) 

Since /U,,] -* 0 as t -* 00 within 141 s 7r/4 equation (3.3) can be written as 

For 0 < 4 5 ~ / 4  the cubic expression Q has only one real zero, say at t = to  > 0. This 
follows by an application of the Descarte rule of sign. If t c to we take (3.3) whereas 
for t > t o  we take (3.5). In any case the integral is of constant sign since Q < 0 as 
t -* 0 and Q > 0 as t -* 00. Hence Im(u’,,uf ) # 0 and U, has no zero in the sector 
0 < 4 c ~ / 4 .  The same is also true in the sector --7r/4 s 4 < 0. Hence for real ( > 0, 
(n - 1) real zeros (the origin excepted) are the only zeros of U, in the sector I#/ 6 ~ / 4 .  

Step 2. Let 4‘ be complex and larg (1 < ~ / 4 .  In this case the expression (3.4) takes 
the form 

Q(t ,  I ,  (6) = t 3  sin 4 4  + 1131at2 sin(34 + 3 arg f )  - \E, It sin(24 + arg E,) 

- I f /  s i 4 4  + arg 5). (3.6) 

Take, for instance, 0 < arg ( < 7r/4. Then arguments similar to step 1 show that U, 
has no zero in 0 s 4 < 7r/12 and on the line 4 = -7r/4. Also it follows from the 
asymptotic expression (3.1) that U, has no zero as ( x I + c ~ .  For a =0, the number of 
zeros remains constant in larg X I  < 7r/4. We have thus proved lemma 3.2. 
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Lemma 3.2. Let u,(x) be the wavefunction corresponding to the eigenvalue 
En(5; J3a, 11, a: 3 0 .  

(i) For l>  0, a > 0, U,, has only (n - 1) zeros in the sector larg X I  s ~ / 4  (larg x 1 < 
~ / 4  if a = 0). 

(ii) For complex 5 with larg[I<tr/4, U, ,  has no zero ( a )  in Osargx < ~ / 1 2  
and on the line (b = - ~ / 4  when 0 < arg 5 < 714, (b) in - ~ / 1 2  < arg x s 0 and on the 
line (b = ~ / 4  when - ~ / 4  < arg 5 < 0. 

(iii) For a = 0, U,, has (n - 1) zeros in larg X I  < 1r/4 for any 4‘ with larg 51 < ~ / 4 .  In 
any case, U” (x) has no zero at infinity. 

Let us now assume that [ = lo is a branch point of E,,. If we vary 5 continuously 
starting from a point on the real 5 axis, along a path that encircles and returns back 
to the initial point, ( n  - 1) zeros of u,(x) (which are continuous functions of 5 )  also 
vary continuously remaining within the sector larg X I  < ~ 1 4 .  Moreover, no zero can 
enter the sector from infinity or from the exterior of the sector. Thus as 5 returns to 
the initial real point the number of zeros cannot change and we get back the same 
energy level E,,. This is contrary to the assumption that 50 is a branch point and hence 
the non-existence of branch points in larg ll< ~ / 4  is proved. 

In the previous paragraph we have tacitly assumed that as 5 varies continuously 
E,, also does so and hence it does not become infinitely large. To prove that E,, 
remains bounded we consider the integral representation of the corresponding 
Schrodinger equation (de Alfaro and Regge 1965). 

x J Z ( - i + [ 3 a x ’ + x ’ 2  v = l + z .  1 

X’ 
(3.7) 

For Ix I < R, R > 0 it can be shown that 

lu,, (x) - JXJ, (&,,x )I(e1”ex ) - l+  0 asIE,,I+oo. (3.8) 
It follows that in the limit ]En/ + CO we have 

I ~ ” ( ~ , , X ) l  > lun(X)-J;FJ”(JE,x)l (3.9) 

for finite 1x1. Let u(x)=&Jv(&,,x). Since both u,,(x) and ~ ( x )  are analytic functions 
of x in the cut plane, we can now apply Rouche’s theorem for a suitable finite region 
in larg X I  < ~ / 4 .  By virtue of the relation (3.9), u,,(x) and v(x) should have the same 
number of zeros in the finite region. Since /E,,] is arbitrarily large, this would imply 
that u,,(x) should have a large number of zeros, contrary to lemma 3.2. Hence E,, 
must remain bounded except only along the real axis. This completes the proof of 
the analyticity of E,, in the sector larg 51 < ~ / 4 .  Applying the scaling equation (2.10) 
we obtain theorem 3.1. 

Theorem 3.1. The energy level E,, is analytic in the cut plane larg 01 < T. 

4. Conclusion 

In an earlier paper (Datta and Mukherjee 1980a) we initiated the study of the coupling 
constant analyticity of the Schrodinger energy levels E,, for the three-term potential 
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(1.1). Analytic continued fraction theory was used to study the [-plane analyticity of 
a J-fraction representation of a Green function and it was shown that the Green 
function was meromorphic in [ for fixed real E, a and > 0. The meromorphy of 
the Green function helped us, in turn, to prove the weak-coupling analyticity of E,, (5 )  
near f = 0. For a = 0, a square-root branch point at f = 0 was encountered. This, 
however, is not correct. In this paper we have extended our investigations using a 
more general approach. It follows from the self -adjointness of the corresponding 
Schrodinger operator for real f ,  cr and P > 0 that the energy levels E,, should be 
analytic for real values of these parameters. Thus the square-root branch point in b 
for a = 0, as found in our earlier derivation, is spurious. Details of the nature of the 
eigenvalue condition in the form of an infinite-dimensional Hill’s determinant 
equation will be reported elsewhere. For fixed a 2 0, f > 0, it is further shown that 
E,, (p)  is analytic in larg P I < T. The point P = 0 is an essential singularity which renders 
the corresponding Rayleigh-Schrodinger series Za,,pn totally divergent. Arguments 
similar to Graffi et a1 (1979) could be easily applied to show that the series is asymptotic 
to E,,@) uniformly in 0 < Ip I < E ,  larg P I < 2~ and the coefficients a,, are bounded by 
( 2 n ) ! .  The bounds of a,, together with the analyticity property lead us to conclude 
that the divergent series is (generalised) Bore1 summable (Graffi et a1 1970) to E,, ( p )  
in larg PI < T. Moreover, combining together (1) the Herglotz property, (2) the first 
sheet analyticity, (3) the asymptotic nature of the series and the bounds of the a,, and 
(4) the asymptotic behaviour E,,(l, a, P )  - P*’*E,,(O, 0 , l )  which follows from the 
scaling relation (2. lo), we see that the Stieltzes continued fraction corresponding to 
the perturbation series exists and converges to E,, (p)  uniformly on compacts of 

B-- 

larg PI < T. 
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